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Metagrammars As Logic Programs

Denys Duchier, Yannick Parmentier, and Simon Petitjean

LIFO, Université d’Orléans, Batiment 3IA
6, Rue Léonard De Vinci - BP 6759
F-45067 Orléans Cedex 2, France,

firstname.lastname@Quniv-orleans.fr

Abstract. In this paper, we introduce the eXtensible MetaGrammar
(XMG), which corresponds to both a language for specifying formal
grammars, and a compiler for this language. XMG has been developed
over the last decade to provide linguists with a declarative and yet ex-
pressive way to specify grammars. It has been applied to the design of
actual tree-based grammars for French, German or English. XMG relies
on a modular architecture, which makes it possible to extend the formal-
ism with additional levels of descriptions and / or linguistic properties.
Thus, on top of syntax, XMG can also be used for the description of other
linguistic information such as semantics, or morphology (the latter being
currently explored for Ikota, an African language spoken in Gabon).

1 Introduction

Since Chomsky’s seminal work on generative grammar [1], many formal systems
have been proposed to describe the syntax of natural language (see e.g. [2]).
These mainly differ in terms of expressivity and computational complexity, and
generally rely either on rewriting rules (e.g. Tree-Adjoining Grammar), or on
constraints (e.g. Head-driven Phrase Structure Grammar).!

An interesting family of formal grammars are lexicalized grammars [3]. Such
grammars associate each elementary structure (i.e. grammar rule) with a lexical
item (called anchor). Lexicalized grammars offer two main advantages: firstly,
the grammar can be seen as a function mapping lexical items (i.e. words)
with uninstantiated grammatical structures (the grammar is then called lexicon).
Secondly, a subgrammar can be extracted from the input grammar according to
the sentence to parse, thus speeding up parsing.

An example of lexicalized grammar is Lexicalized Tree-Adjoining Grammar
(LTAG). In this formalism, the grammar is made of (thousands of) uninstan-
tiated elementary trees (called tree templates), where the leaf nodes contain at
least one anchor node (labelled with ¢). These anchor nodes are attached to ad-
equate lexical items at parsing. As an illustration, consider Fig. 1 depicting two
tree templates to be anchored with a transitive verb such as manger (to eat).

! We do not discuss the distinction between constituency and dependency grammar
here, nonetheless the latter can be seen as a constraint-based specification of syntax.
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Jean mange une pomme La pomme que Jean mange
John  eats an apple The apple that John eats

Fig. 1. Elementary structures of an LTAG

From a linguistic point of view, lexicalized grammars allow to express gen-
eralizations over lexical entries by gathering tree templates, whose anchor have
similar syntactic properties, into tree families. From a computational point of
view, lexicalized grammars are made of a huge number of structures, due to
redundancy within the lexicon (e.g. tree templates sharing common subtrees).

The concept of metagrammar was introduced by Candito [4] in order to deal
with structural redundancy by capturing generalizations over tree templates. In-
stead of directly describing the syntax of language via a formal grammar, the
linguist specifies the structures of this formal grammar using a dedicated frame-
work. This specification of the grammar is called a metagrammar and is automat-
ically processed to generate the grammar. Many metagrammatical frameworks
have been proposed for LTAG [4,5,6,7]. Here we introduce one of these, namely
eXtensible MetaGrammar (XMG) [6]. XMG differs from other metagrammar ap-
proaches by its declarative specification language, and its modular architecture.
The latter made it possible to extend the concept of metagrammars to other
levels of description (e.g. morphology) and linguistic principles (e.g. constraints
on word order), as we shall see below.

2 The XMG language

As mentioned above, the XMG language allows for a declarative specification
of linguistic structures (including tree descriptions). More precisely, XMG offers
a unification-based language a la Prolog to specify what a grammar is. This
specification is then processed by the XMG compiler in order to produce a
computational grammar (e.g. an LTAG), which can be saved in an XML file.

Capturing redundancy using abstractions. XMG relies on the concept of abstrac-
tion to allow the linguist to refer to reusable grammatical units (e.g. (combina-
tions of) tree fragments for LTAG). Formally, an XMG specification corresponds
to declarative rules, which can be defined using the following abstract syntax:

Rule := Name — Content
Content := Contribution | Name | ContentV Content | Content A Content

Here, Contribution refers to a linguistic fragment of information of a given type
(e.g. syntax), to be accumulated either conjunctively or disjunctively. Such a



fragment is specified using a dedicated description language (e.g. a tree de-
scription language when describing syntax with LTAG). This language relies on
unification variables to share information between distinct XMG rules (i.e. dis-
tinct grammatical units) or between distinct contributions (i.e. between syntax
and semantics). The scope of these variables is by default restricted to the rule,
but can be extended via import / export declarations. As a toy example of these
variables and of XMG concrete syntax, consider the rules CanonicalSubject
and Subject below, the latter specifies a generalization over the two possible
realizations of a subject shown in Fig. 1 (-> is dominance and >> precedence).
class CanonicalSubject %% (comment) a class is an XMG rule in the abstract syntax
export 7x 7y
declare 7x ?y ?z 7u
{<syn> %% contribution of type <syn>

{ node 7x [cat=S] ; node 7z [cat=N] ; node ?y (type=anchor)[cat=V] ; node ?u [cat=N] ;

?Xx -> %z ; ?7x > 7y ; ?7x > 7u; 7z >> 7y ; 7y >> 7u }

}

class Subject { CanonicalSubject[] | RelSubject[] }

Towards user-defined description languages. Metagrammars bring interesting in-
sights in grammar engineering by offering an abstract view on language, made
of combinations of grammatical units. So far, these units were described using a
set of hard-coded descriptions languages. To reach extensibility, we are explor-
ing another approach: permitting user-defined description languages (similarly
to the grammar, these must be described). Some parts of the compiler thus have
to be generated automatically.

3 The XMG compiler

General architecture. As mentioned above, the XMG language is nothing else
than a logic language. Its compiler thus share some features with a compiler for
logic programs. First, the classes composing the metagrammar (defined using
the XMG language introduced above) are converted into clauses of an Extended
Definite Clause Grammar (EDCQG) [8], which corresponds to a DCG having
multiple accumulators. This underlying EDCG explicits the accumulation of
contributions of multiple types (e.g. syntax, semantics). Then, this EDCG is
evaluated according to axioms defined in the metagrammar (comparable to Pro-
log queries). This produces a list of tuples of contributions (the arity of these
tuples is the number of contribution types). Finally, each tuple of this list is
optionally post-processed. For instance, tuples whose syntactic contribution is
a tree description are fed to a solver in order to produce syntactic trees. Dur-
ing this solving step, it is possible to apply linguistic well-formedness principles
(these can use information from other contributions of the tuple).

XMG 2. The first version of XMG (XMG 1.x) was developed between 2003
and 2010 in the Oz programming language, and included only three descrip-
tion languages: one for specifying syntactic trees (either LTAG tree templates or
Interaction Grammar tree descriptions), one for specifying semantic representa-
tions, and one for specifying the syntax / semantics interface. The development



of a new version of XMG from scratch in YAP Prolog started in 2010, in or-
der to extend XMG with the ability to define an arbitrary number of types of
contributions (and thus of user-defined description languages).>

4 Current state and future work

XMG can be used to describe tree structures, feature structures, predicates, or
properties of the Property Grammar formalism. Version 2 of the XMG language
superseeds Version 1 (being backward-compatible). XMG 2 can be used to com-
pile grammars designed with XMG 1, including the French LTAG and French
Interaction Grammar, whose XMG metagrammars are available on-line (along
with toy examples of XMG input / output).®> When describing LTAG tree tem-
plates, XMG 2 offers specific linguistic principles, namely ordering between sister
nodes, uniqueness of a given node label, and node merging via polarities.

XMG 2 is being actively developed in order to allow for cross-framework
grammar engineering, in the lines of [9], but also for linguistic experimentation
by defining dynamically its own grammar formalism as mentioned in Section 2.

XMG 2 has been used recently to describe the morphology of verbs in Ikota,
an agglutinative Bantu language spoken in Gabon [10]. The idea behind this
work is to specify morphemes as contributions in terms of lexical phonology and
inflection (morpho-syntactic features). In a next step, we plan to extend this
metagrammar (i.e. this abstract linguistic account of morphology) to syntax.
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On Categorial Grammars and Logical
Information Systems : using CAMELIS with
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Abstract. We have explored in [FF10] different perspectives on how
categorial grammars can be considered as Logical Information Systems
(LIS)— where objects are organized and queried by logical properties —
both theoretically, and practically. LIS have also been considered for the
development of pregroup grammars [BF10].

We propose to illustrate these points with the CAMELIS tool that is
an implementation of Logical Information Systems (LIS) and that has
been developped at Irisa-Rennes. CAMELIS may give another view on
linguistic data, and provide an easy help to browse, to update, to create
and to maintain or test such data.

1 Logical Information Systems

Logical Information Systems (LIS) are based on Logical Concept Analysis
(LCA) [FR04]. LCA is an extension of Formal Concept Analysis that allows
to use logical formulas for rich object descriptions and expressive queries.

The LCA framework [FR04] applies to logics with a set-valued semantics
similar to description logics [BCM103]. It is sufficient here to define a logic
(see [FRO4] for a detailed presentation) as a pre-order of formulas. The pre-
ordering is the logical entailment, called subsumption: e.g., an interval included
in another one, a string matching some regular expression, a graph being a
subgraph of another one.

A logic is a pre-order L = (L,Crp), where L is a set of formulas, T is a
customizable parameter of the logic, and Cr is a subsumption relation that
depends on T'. The relation f Cp g reads “f is more specific than ¢” or “f
is subsumed by ¢”, and is also used to denote the partial ordering induced
from the pre-order.

A logical context is a tuple K = (O, L, X,d), where O is a finite set of ob-
jects, L is a logic, X C L is a finite subset of formulas called the navigation
vocabulary, and d € (O — Lr) is a mapping from objects to logical formulas.
For any object o, the formula d(o) denotes the description of o.

The extent of a query formula ¢ in a logical context K is defined by K.ext(q) =
{o€0|d(0) Cr q}.



A key feature of LIS, is to allow the tight combination of querying and
navigation [Fer09]. The system returns a set of query increments that suggest to
users relevant ways to refine the query, i.e. navigation links between concepts,
until a manageable amount of answers is reached.

A query is a logical formula, and its answers are defined as the extent of this
formula, i.e. the set of objects whose description is subsumed by this formula.

Below, screenshots show CAMELIS !, where the query box is at the top, the
extent is presented as a list of object names at the right, and increments are
shown as an expandable tree on the left.

Another important aspect of LIS is genericity w.r.t. the logic : LOGFUN? is
a toolbox of LOGIC FUNCTORS [FR06] (logic components, that can be assembled
at a high level) ; it can be used in CAMELIS. A dedicated logic has been used
in [FF10] to represent pregroup types, in order to describe words, phrases, and
sentences.

2 Categorial Grammars and their languages

A categorial grammar is a structure G = (X, I, S) where: X is a finite alpha-
bet (the words in the sentences); given a set of types Tp, I : X s P/ (Ip)
is a function that maps a finite set of types from each element of X' (the
possible categories of each word); S € Tp is the main type associated to
correct sentences.

Language. Given a relation on Tp* called the derivation relation on types : a
sentence vy ... v, then belongs to the language of G, written £(G), provided
its words v; can be assigned types X; whose sequence Xj ...X, derives S
according to the derivation relation on types.

An AB-grammar is a categorial grammar G = (X, I, S), such that its set of
types Tp is constructed from Pr (primitive), using two binary connectives
/, \ , and its language is defined using two deduction rules:

A, A\B+FB (Backward elimination, written \ )
B/A, A-B (Forward elimination, written / )

Lambek L AB-grammars are the basis of a hierarchy of type-logical grammars.
The associative Lambek calculus (L) has been introduced in [Lamb8], we
refer to [Bus97] for details on (L) and its non-associative variant (NL).

The pregroup formalism has been introduced [Lam99] as a simplification of
Lambek calculus [Lam58]. It is considered for the syntax modeling of various
natural languages and also practically with parsers [DP05,0eh04,Béc07] and
sofware tools for grammar construction [BF09]. See [Lam99] for a definition.

3 Modelling Approaches for linguistic data
We now illustrate a few uses of CAMELIS with linguistic data, that can be part
of the system demonstration.

! http://www.irisa.fr/LIS/ferre/camelis/
2 http://www.irisa.fr/LIS/ferre/logfun/.



‘a 1l ‘  apply

ONOT ©® = O== O=<= pivot| [ Picto (0) | Texto (18)
au‘ 14 > pgtype ? [1]1< < Resuts:1-12/18 > >|
18+ class ? jjomn
. John eats apples
3 D classis "group”
Mary
» class is "sentence"
The
4 b classis "type .
S b class s "word" T
13 > name ? &)
14 < POS_TAG i
2 b Determiner [ELSGI Lo
(pi_3(1) 5_11
7 b Noun
a
BB b sentence .
3 D Verb
14 v type ? L

A direct application is to consider
that the information attached
to words?, are like attributes.

Fle Logic Browsing Updating Actions Help
@) (o] -
‘ f Apply

imot contains "grand" and cat contains "adv"
Zoom | |Pivot| | Picto (0) | Texto (3)

|< <Resuts:1-3/3 > 3|

ONoT @ = O>= O <=

3~ cat?

3 < cat contains "adv" gants,

- randement
2 b catis "advm"

1 b catis "advPref"
I3 b detail ?
IB > mot ?

randiosement

Fig.2. Words with their categories,
from a fragment of Lefff3 : selection of
adverbs containing “grand”

@ Lefff stands for: “Lexique des
Formes Fléchies du Frangais / Lex-
icon of French inflected forms” (see
http://alpage.inria.fr/"sagot/
lefff-en.html)

Fig. 1. A toy grammar, with additional
informations, as a LIS context.

Although there can be several modelling
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not force to separate different views : LIS
are flexible w.r.t. heterogeneity and par-
tial knowledge.
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The tool permits query, navigation, but also the construction of new objects
and the attachment to properties. Another benefit consists in the execution of
actions from CAMELIS, we can illustrate possible connexions with parsers :
calls to several parsers of a selected sentence, such as C&C3 for CCG or PPQ
for pregroups [BF10] and help in the construction of type-logical grammars.
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Categorial grammars and wide-coverage
semantics with Grail

Richard Moot

LaBRI, CNRS, Université de Bordeaux
351 cours de la Libération
33405 Talence Cedex FRANCE

Abstract. This demonstration shows Grail, a wide-coverage type-logical
parser for French which produces Discourse Representation Structures.
We will illustrate the different components by means of an example; the
demonstration itself will allow people to test the current implementation
on their favorite examples themselves.

1 Introduction

Since the work of Bos et al. (2004) for English, we know that it is possible
to produce Discourse Representation Structure (DRS, Kamp and Reyle, 1993)
semantics for arbitrary English text, going beyond simple wide-coverage parsing
to wide-coverage semantics. This demonstration will show a system of wide-
coverage semantics for French, using the logical view of categorial grammars
exemplified by (Moortgat, 2011; Morrill, 2011; Moot and Retoré, 2012).

To illustrate the different computational steps followed and the different tools
and models used, we will look at the following (simple) example sentence and
show, step by step, how it is transformed into a DRS.

1. Chine: Chen Guangcheng demande & Barack Obama de I’aider & partir.!
China: Chen Guancheng asks Barack Obama to help him leave.

2 Parsing

The first step of the treatment is the parser and it already needs to solve two

problems: first, no matter the size of the lexicon, any text contains a number

of words which do not appear in the lexicon (for the current example, neither

“Chen” nor “Guangcheng” appears in the lexicon). Second, any lexicon large

enough to be suitable for wide-coverage parsing necessarily assigns a very large

number of formulas to many common words; so many that they become an
[1382)

important bottleneck to parsing. To give an indication, the comma “)” already
has 63 possible formulas in the current lexicon. A well-known solution to both

! Sentence found on http://www.rtbf.be/info/monde visited 3 may 2012.



problems is using a supertagger (Bangalore and Joshi, 2011), which uses the
methods of (statistical) part-of-speech (POS) tagging, with a richer tagset, hence
supertagging. In the current context, these richer tags are type-logical formulas.

For training and evaluation we have annotated the French Treebank (FTB
Abeillé et al., 2000, containing 12.902 sentences, 383.523) plus text from some
additional sources (for a total of 13.762 sentences and 405.541 words) with type-
logical formulas (see Moot, 2010, for more details on the grammar extraction).

The taggers of Clark and Curran (2004), which consists of a POS-tagger and
a supertagger (in addition to several other tools, such as a tagger for Named
Entity Recognition; annotation of the FTB with NER data is currently being
performed) have been used for training and evaluation. Training was done on
nine of out every ten sentences, with every tenth sentence used for evaluation, for
a ten-fold cross-validation. The POS-tagger results (using the Treetagger tagset)
are among the best-known results for French, 98.5% POS-tags correct (this is
in part due to the fact that some difficult choices are left to the supertagger).
Supertagger results are shown in Figure 1. The 3 value is a way of assigning mul-
tiple formulas per word (indicated f/w): given a first supertag with probability
p, all supertags with probability > Sp are included.

These results compare favorably with the
CCG supertagger results for English (Clark,

2002): similar precision but significantly fewer Correct‘ 3 ‘f/w
formulas per word (3.8 for the CCG supertag- 90.4 1.0 [1.0
ger versus 2.4 here). Note also the the CCG su- 96.3 (0.1 |14
pertagger has a number of lexical rules to reduce 97.1 0.05/1.6
the size of the lexicon as well as specific coordi- 98.2 0.0112.4

nation rules whereas the type-logical supertagger
has no lexical rules and leaves the correct type  Fig. 1. Supertagger results
assignment for coordination and the interpunction symbols to the supertagger.

n/n (np\'s)/(n (np \ np) / (
n n\n ((np\'s) /[ ]pp_a/np[ ]np (n\n)/(np
np / np np (np\'s)/ @ \1s)/fillnp /np [Wnp (np \ s_defll (np \ s) / @] ((np \ s_ir

[ NAM | NAM [ VER:pres [] PRP I NAM | NAM | PRP [ PRO:PER [ VER:infi

Chen Guangcheng demande a Barack Obama de I' aider

Fig. 2. POS-tagger and Supertagger results for sentence 1 with 5 = 0.1

Figure 2 shows the user interface connecting Grail and the taggers with (part
of) the results for sentence 1. The POS-tags are displayed directly above the
corresponding words, with the percentage of the bar in a darker shade indicating
the level of confidence of the POS-tagger (eg. “demande”, which can occur both
as a noun and as present tense verb, is the most difficult word for the tagger,
with 92.8% confidence). The results of the supertagger are shown above the
POS-tags. For “demande”, the most likely supertag is (np\s)/np (62.3%, the
part of the box before the formula with a darker shade indicates the confidence

10



of the supertagger). With a § value of 0.1 this means that all supertags with
a probability greater than 6.2% are included for this word — in the current
case ((np\s)/(np\Sdeinf))/PPa (15.2%, the correct value in the current case) and
(mp\8), (D Saing) (12:9%):

The Grail parser returns a parse for the most likely sequence of formulas for
which a parse can be found.

3 Semantics

Given that type-logical proofs correspond to lambda-terms in the simply typed
lambda calculus, all that is needed to obtain a semantic recipe for the complete
phrase is to provide a lexical lambda term for each of the word-formula pairs
used in the proof and beta-reduce the term obtained after lexical substitution.

When providing the entries for the semantic lexicon, we use the fact that most
open-class words (such as verbs, nouns and adjectives) have meaning recipes
which differ only in the constant used: for example, the meaning of a noun w
is simply Az.w’(z) (or, equivalently, simply w’). This means that the lexicon
contains several “default” rules for open-class words (applying when no more
specific rule does) and several more specific rules for the closed classes, such
as determiners and conjunctions, but also for open-class words requiring special
treatment (eg. words like “autre” (other), “ancien” (former) which do not follow
the standard adjective meaning recipe). The lexicon also lists such semantic
information as the distinction between raising and control verbs.

Figure 3 shows the I¥TEX output of Grail for the example sentence (the
figure is slightly simplified for ease of exposition and doesn’t include temporal
information).

23 o Yo €1 Y1
topic(e1, z3) || nommé(zo, Barack) || nommé(yo, Chen) , ez €3 T3
Chine(z3) nommeé(zo, Obama) nommé(yo, Guangcheng) yi:[ g5 =7

aider_a(ez2, zo, x3, €3)
partir(es, x3)

demander(ey, yo, zo, Y1)

Fig. 3. Semantic output of sentence 1

Proper names are treated as presuppositions and are projected to the top-
most DRT, meaning that both “Barack Obama” (with discourse referent )
and “Chen Guangcheng” (with discourse referent yg) are available for further
anaphoric resolution. Due to the semantics of “:” with formula (n\s)/s, “Chine”
(China) is added as the topic of the main sentence. Looking at the main DRS on
the right hand side of the figure, we see that there is a single predicate: the verb
“demander” (to ask), which takes four arguments, a Davidsonian eventuality ey,
the one doing the asking yo (Guangcheng), the one being asked zy (Obama) and
what is being asked, which is the embedded DRS labeled y;. The embedded DRS
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labeled y; still contains an unresolved anaphor x3 =7 corresponding to the clitic
“I'/le” (him) which still needs to be resolved to Guancheng (yo, though binding
theory would allow z3, China, as well). In addition the embedded DRS contains
the predicate “aider &” (help ... to) with subject xy (Obama) object x5 (the un-
resolved pronoun) and eg, the event being helped with, which is “partir(es,x3)”,
indicating “the event e of x3 leaving”.

Though many refinements and improvements are still possible (and currently
being actively developed along several axes), Grail still gets many of the basic
semantic facts right, including doubly embedded control verbs and this demo
session will allow the people to see the current system in action and to experiment
with it using sentences of their choice.

Grail itself, as well as the supertagger and POS-tagger models and the se-
mantic lexicon, are all licensed under the GNU Lesser General Public License.

http://www.labri.fr/perso/moot/grail3.html
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CatLog: A Categorial Parser/Theorem-Prover*

Glyn Morrill
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Abstract. We present CatLog, a parser/theorem-prover for logical cat-
egorial grammar. The logical fragment implemented is a displacement
logic the multiplicative basis of which is the displacement calculus of
Morrill, Valentin & Fadda (2011)]8].

(Logical) categorial grammar (Morrill 1994[9], 2011[10]; Moortgat 1997[6];
Carpenter 1998[1]; Jager 2005[4]) originated with Lambek’s (1958[5]) insight
that a calculus of grammatical types (constituting a residuated monoid) can
be formulated using Gentzen’s method. The result is an algebraic rendering of
grammar as logic and parsing as deduction. Although the design is, really, ar-
chitecturally perfect and, by now, well-understood, linguistically it is strictly
limited to continuity by the fact that it deals with a residuated family with
parent (the canonical extension of) concatenation: after all, the whole challenge
of modern linguistics for 50 years has been the ubiquity in natural grammar
of discontinuity. In this relation Morrill, Valentin & Fadda (2011)[8] provides
for discontinuity the displacement calculus D, deductively a conservative exten-
sion of the Lambek calculus L with residuated families with respect to both
concatenation and intercalation. Like L, D is free of structural rules and enjoys
Cut-elimination and its corollaries the subformula property, decidability, and the
finite reading property.

CatLog is a categorial parser/theorem prover implementing a categorial logic
extending D. It employs Cut-free backward chaining sequent theorem-proving.
For L deductive spurious ambiguity can be removed by normalization (Hendriks
1993[3]). Because D is based on the same design principles, the same techniques
can be adopted (Morrill 2011[7]) and CatLog depends on this. In addition to
normalization CatLog uses sequent search space pruning by the count invariance
of van Benthem (1991[11]). The type-constructors of the displacement logic of
CatLog are shown in Fig. 1.

Version f1.2 of CatLog is provisional in a number of respects. In particular,
not all spurious ambiguity is eliminated for the categorial logic fragment, and
non-duplication of results is achieved by filtering according to a brute force
duplication check. Furthermore, bracketing structure must be specified in the
input, rather than be induced. And the count-invariance check for multiplicatives

* This research was partially supported by BASMATI MICINN project (TIN2011-
27479-C04-03) and by SGR2009-1428 (LARCA).
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I\, / Lambek connectives
I, {dys Ok, Ti troe{>,<} displacement connectives

®, - nondeterministic continuous connectives
1,©, 1 nondeterministic discontinuous connectives
{7, F Y eers,<} bridge and split

, nondeterministic bridge and split

Q4,4 > left and right projection and injection
&, + semantically active additives
m,u semantically inactive additives
v, 3 first-order quantifiers
it structural modalities
10 bracket modalities

]
0o,m normal modalities
| limited contraction for anaphora

Fig. 1. Type-constructors of CatLog

is not adapted to additives and structural modalities. These issues remain topics
for future improvement. Nevertheless CatLog 1.2 already provides fast and wide-
coverage Montague-like parsing.

The program comprises 3000 lines of Prolog implementing some 80 inference
rules for the categorial logic fragment, IXTEX outputting, lexicon, and sample
sentences. Among the examples four blocks are distininguished: Dutch examples
(cross-serial dependencies), relativization including islands and parasitic gaps,
the Montague example sentences of Dowty, Wall and Peters (1981)[2] Chapter 7,
and the example sentences of Morrill, Valentin and Fadda (2011)[8].

The functionality is as follows. Once CatLog has been loaded into Prolog, the
query 7- pplex. will cause the lexicon to be pretty printed in the console win-
dow, the Dutch part of which is as shown in Fig. 2. The query ?- pplexlatex.
has no visible effect but will cause the lexicon to be output in ETEX to a file
named “s.tex”. Querying t(N) will test the examples unifying with term N.
For example 7- t(rel(6)). tests the relativization example 6, 7- t(rel(.)).
tests all the relativization examples, and 7- t(_). tests all the examples. The
analyses — the examples, the derivational proofs, and the semantic readings
— appear in the Prolog window, and this information but without duplicate
equivalent analyses is written in IXTEX to a file named “t.tex”. EXTEXing the file
“out.tex” will include s.tex and t.tex and format the lexicon and last analyses
made. For example, 7= t(d(2)) . produces the contents in Fig. 3 in Prolog. The
ITEX output for the Dutch part of the lexicon and the same example is as shown
in Figs. 4 and 5.
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wil: (NA\Si)in(NA\Sf): LBLC((want (B C)) C)

wil: Q/~ (Sfex((NA\Si)in(NA\Sf))): LB(B LCLD((want (C D)) D))
alles: (SAexNt(s(n)))inSA: LBAC[(thing C) -> (B C)]

boeken: Np(n): books

cecilia: Nt(s(f)): c

de: Nt(s(A))/CNA: the

helpen: |>-1((NA\Si)in(NB\(NA\Si))): LCLD((help (C D)) D)
henk: Nt(s(m)): h

jan: Nt(s(m)): j

kan: (NA\Si)in(NA\Sf): LBLC((isable (B C)) C)

kunnen: |>-1((NA\Si)in(NA\Si)): LBLC((isable (B C)) C)

las: NA\(Nt(s(B))\Sf): read

lezen: |>-1(NA\(NB\Si)): read

nijlpaarden: CNp(n): hippos

voeren: |>-1(NA\(NB\Si)): feed

zag: (Nt(s(A))\Si)in(NB\(Nt(s(A))\Sf)): LCLD((saw (C D)) D)

Fig. 2. Dutch part of lexicon
(d(2)) jan+boeken+kan+lezen S_647
Nt(s(m)): j, Np(n): books, (NA\Si)in(NA\Sf): LBLC((isable (B C)) C), [>-1(ND\(NE\Si)): read => SF

Nt(s(m)), Np(n), (Nt(s(m))\Si)in(Nt(s(m))\Sf), [>-1(Np(n)\(Nt(s(m))\Si)) => Sf [inL]
Np(n), 1, [>-1(Np(@)\(Nt(s(m))\Si)) => Nt(s(m))\Si [\R]
Nt(s(m)), Np(n), 1, I>-1(Np(m)\(Nt(s(m))\Si)) => Si [[>-1L]
Nt(s(m)), Np(n), Np(m)\(Nt(s(m))\Si){1} => Si [\L]
Np(n) => Np(n)
Nt(s(m)), Nt(s(m))\Si{1} => Si [\L]
Nt(s(m)) => Nt(s(m))
Si{1} => Si
Nt(s(m)), Nt(s(m))\Sf => Sf [\L]
Nt(s(m)) => Nt(s(m))
Sf => Sf

((isable ((read books) j)) j)

Fig. 3. Dutch verb raising

wil : (NA\Si)L(NA\Sf) : ABAC((want (B C)) C)

wil : Q/ " (SFA((NA\S)L(NA\SF))) : AB(B XCAD((want (C D)) D))
alles : (SATNt(s(n)))LSA : ABVC|[(thing C) — (B C)]

boeken : Np(n) : books

cecilia : Nt(s(f)) : ¢

de : Nt(s(A))/CNA : the

helpen : >~ ((NA\S%)J(NB\(NA\S%))) : \CAD((help (C D)) D)
henk : Nt(s(m)) : h

jan : Nt(s(m)) : j

kan : (NA\Si)J(NA\Sf) : \ABAC((isable (B C)) O)

kunnen : > "1 ((NA\S4)}(NA\Si)) : ABAC((isable (B C)) C)

las : NA\(Nt(s(B))\Sf) : read

lezen : >"'(NA\(NB\Si)) : read

nijlpaarden : CNp(n) : hippos

voeren : > (NA\(NB\S7)) : feed

zag : (Nt(s(A))\Si)L(NB\(Nt(s(A)\SS)) : \CAD((saw (C D)) D)

Fig. 4. Dutch part of lexicon
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(d(2)) jan+boeken+kan+lezen : Sg47

Nt(s(m)) : j, Np(n) : books, (NA\Si)L(NA\SS) : ABAC((isable (B C)) C),>"1(ND\(NE\S7)) :
read = SF

Nt(s(m)) = Nt(s(m)) Si{1} = Si

Np(n) = Np(n) Nt(s(m)),| Nt(s(m))\Si{1} | = S "

\L

Nt(s(m)), Np(n),| Np(n)\(Nt(s(m)\Si){1} | = i

>"1L

Nt(s(m), Np(n), 1,| >~ (Np(m)\(Nt(s(m)\S1)) | = s

Np(n),1,> " (Np(n)\(Nt(s(m))\Si)) = Nt(s(m))\Si

Nt(s(m)) = Nt(s(m)) Sf = Sf

Nt(s(m)),| Nt(s(m))\Sf| = Sf

Nt(S(m)%NP(n)»’ (Nt(s(m))\SD)L(Nt(s(m))\S[) ‘,>71(Np(n)\(Nt(S(m))\5i)) = SF

((isable ((read books) 7)) 7)

10.

11.

Fig. 5. Dutch verb raising
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Abstract. This demonstration introduces Ygg, a sentence parser which
uses an AB grammar with a probabilistic component and the CYK
(Cocke—Younger—Kasami ) algorithm. The grammar is extracted from
the French Treebank, with a generalized tree transducer, SynTAB (Syn-
tactic Trees to AB). Then, we use it for sentence analysis, from both the
French Treebank and the Est Républicain corpus.

1 Introduction

This demo focuses on the use of Ygg, our sentence analyzer which uses a proba-
bilistic version of the CYK algorithm [4,9]. An overview of our various softwares
is explained by the scheme 1.

In order to run our analyzer, we need an input grammar and sentences to
analyze. The raw sentences come from the French Treebank [1] and the FEst
Républicain corpus [3], and will be typed by the Supertagger [6,7]. The AB
grammar [5] is extracted from the French Treebank, with SynTAB, described in
detail in [8]: our tree transducer takes as input the syntactic trees of the French
Treebank, and gives as output a forest of AB derivation trees. Among others,
we choose an AB grammar for the links with semantics and the possibility to
extract A\-terms from the derivation trees. An example of transduction is shown
in figure 2.

By gathering the leaves of derivation trees, we can have the usual form of an
AB grammar, a lexicon which links words and their various types. However, we
decided, for the need of the CYK algorithm, to extract a more usual grammar.
The AB grammar is already in Chomsky Normal Form, which is necessary for the
algorithm. We added a stochastic component by subdividing the rules from their
root (label plus type), and counting the occurrences of various instantiations of
an AB grammar (¢ — a/b b and a — b b\a).

The next step, realized for the moment with the CYK algorithm, is to use
this grammar to create from raw sentences derivation trees and A-terms corre-
sponding to them.

2 Sentence Analysis

The use of CYK algorithm has been motivated by the accordance between the
grammar extracted from the derivation trees and the ease of adding the prob-
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- SynTAB .. extractor
Supertagger
sentences

Fig. 1. Processing line.

typed sentences

Ygg analysed sentences

SENT
///7 v}
PP-MOD PONCT VN NP-OBJ PONCT
PR v NN N v
P NP , CLS-SUJ Vv VPP DET NC .
¥ ¥ N ¥ ¥ A ¥ ¥
A DET NC on avait dénombré cent quarante candidats
v ¥
cette époque
TEXT tat
SENT s PONCT s\tat
A
PP-MOD s/s SENT s . s\txt
o ~ — \
P (s/s)/np NP np CLS-SUJ np np\s
v ¢ N v — —
A DET np/n NC n on VN (np\s)/(np\sp) VPP np\sp
A ¥ ¥ Ve ~
cette époque \% (np\s)/(np\sp) VPP (np\sp)/np NP-OBJ np
v v e AN
avait dénombré DET np/n NC n
¥ ¥

cent quarante candidats

Fig. 2. Input and output of the transducer, for the sentence “A cette époque, on avait
dénombré cent quarante candidats.” (“A this time, 140 candidates have been counted”).

abilities. However, we decided to separate the typing phase from the analysis
phase.

The word typing done by the Supertagger, enables us to choose the number
of types given to a word, by adjusting a 8 parameter. Indeed, the Supertagger
selects the types, for a word, which have a probability greater than g times the
greatest probability for this word. If 8 = 1 we limit ourselves to one type per
word.

The CYK algorithm is known for generating highly ambiguous cases. The
probabilistic aspect of it, however, enables us to put aside the trees which have
the lowest probabilities, to keep only the best one. When two trees have the same
probability, the algorithm will choose the first tree that it found. Having the same
probabilities is possible because of the permutation of rules. For the moment,
our software doesn’t have a GUI and it is invoked with various parameters :

$>:./ygg [-a grammar_file] -o output_file [-1 log file -p]
sentence_file
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The bracketed parameters are optional. If the grammar file is not specified,
the CYK algorithm will just create possible derivation trees, without probabil-
ities. If a log file is provided, the trees with lesser probabilities will be stocked
inside. The option “-p”, useless without a grammar file, adds a really small prob-
ability on rules which are not in the grammar but are instantiations of AB rules.
It enables the program to analyze correct sentences where some rules are not in
the grammar, but it does not take priority over the rules of our grammar. At
the moment, the probability given to inexistent rules is a C+4 constant, the
smallest possible value of a float.

3 Experimental Results

The tests have been made with a [ parameter equal to 0.01. The sentences
come from the French Treebank and the Est Républicain corpus, which gather
sentences from the newspaper Fst Républicain for the years 1999, 2002 and
2003. The sentences are not annotated or in a tree form, so we cannot apply
our transducer on them. We decided to use an excerpt of 520 sentences (the
whole corpus, in XML format, was not compatible with the Supertagger, and
contains thousands sentences), but even if we chose sentences in the same vein
as the one of the French Treebank, the vocabulary and the writing style is quite
different. On the 12853 sentences of French Treebank, the analysis of 11456
succeed (89.1%). On the 520 sentences Est Républicain corpus, the success rate
is 85.6%, ie 445 sentences. We can see that the Est Républicain results are
slightly worse than the French Treebank one.

The output of Ygg is derivation trees corresponding to analyzed sentences,
with the probability for each tree. Indeed, Ygg selects the best tree, from a
probabilistic point of view, but with the Supertagger the types given to words
have their own probabilities, and generally it gives a greater probability to types
that are in a similar context. The figure 3 shows the two most probable trees for
the sentence “Celui-ci a tmporté a tout va pour les besoins de la réunification.”
(“This one imported without restraint for the reunification’s need.”). The main
difference between the two trees is the prepositional phrase attachment. Fortu-
nately, the best tree is more representative of the original treebank. The corre-
sponding A-terms are respectively:

apl(., apl(apl(pour, apl(les, apl(de, apl(la, réunification)),
besoins)), apl(a_tout_va, apl(apl(a, importé), celui-ci)))) and

apl(., apl(apl(apl(a_tout_va, apl(a, importé)), apl(pour,
apl(les, apl(de, apl(la, réunification)), besoins))), celui-ci)).

4 Software Requirements and Licensing Conditions

Ygg has been implemented in C++, and has been tested on Mac OS X and

Linux. The hope of reuse made us choose a GNU GPL licence for every part of

the software. The French Treebankis provided by the Paris VII LLF laboratory.
Our work is available at [10], from the transducer to the analyzer.
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/ s\ . s\txt

s s\s
s a-tout_va s\s pour (s\s)/np np
« PN
Celui-ci np np\s les np/n n
PN
a (np\s)/(np\sp) 1MPOTté np\syp besoins n n\n
« N
de (n\n)/np np

Y
la np/n Téunification n

/ mt\;
N

Celui-ci np np\s

(np\s)/pp \
« ~

(np\s)/pp a-tout_va ((np\s)/pp)\((np\s)/pp) PP
~ PN

. s\ twt

a ((np\s)/pp)/(np\sp) impDTté np\sp pour pp/np np

¥ N
les np/n n
Y
besoins n n\n

Y
de (n\n)/np np
r'd

la np/n réunification n

Fig. 3. Probability of the first tree: 5.1e~%; probability of the second one: 2.3e 8.
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